
limitation in LLMS
.

Human : internal world· language reasoning. -del
- I

· Embodied reasoning. - Human : strategic planning - >. internal model to

predict States
.

· social reasoning.

cunderstand human
· simulation of alternative

plas.

↓
·

access outcomes to refine
/pick

Theory of mind: reasoning about hidden mental variables the best.

E ⑳liefGoal Human conduce model-based reasoning

↓ based on world models and agents.

⑫ive

~

World Model in Humans

· Perceiving physical properties

· Predicting dynamics

·Model-based control/planning
human tool use : can learn tool through a few

trials .

would model as state transition probability.

causal relationship between
action and state change.

P(s' Is
,
a)

↑ ↑ - ↑
action.

next current

State State

Agent model in human :

-



Sz

· goal - Si
-~

goal

· strength

# ⑰
relationship --

Current State

moral judgment
(simulate plan via world models .

en) Alpha Go

· beliefs .

#
MCTS with a known world

model .
level - 1 agent mode

:

-

· agent as a observer for observing level - O agent

model-based theory of mind :

1 . language reasoning
-

P(mind) state
, actions) & P
_

Lactions / state
,

mind) "(mind)
· math

, logic ---
-

↑ level - o agent
understand

the mind through state action 2. Sece/time&

Behavior Prediction I Y vision
,
audio

,
sensory, -

P(future action I state,

mind). 3. multi-agency
-

adversary ,
collaboration---

Human-Ai interaction :

4. law of nature
-

↑ Lactional I State
,

mind
Al

,

mind human)
. · biology, ---

Recursive social reasoning :

level - 2 agent

↓ observe

level-1 agent

!

Experience :
-

Data example



· Rules/Constraines
roblemswith few label :

knowledge graphs · Privacy ,
security

· Rewards & Expensive to collect/annotate

Auxiliary agents
· controllable content generation.

· Adversaries
· Difficult /expertise - demanding to annotate.

Master classes .

· specific domain

--

_solution :

y
loss

S
experience.

C

min L(0
,
2)

y j
Optimization model
solver

architecture

-
unified ,

standalized ML principles

A "standardized formalism" of Mr

min-H + D - E
4 ,04 ↑

uncertainty Divergence Experience



M

NLP before 2017 :

Automated understanding and generation of natural language

· Name Entity Recognition .

en) Adam Griver was born in San Diego.
- -a

person city.

· Sentiment Analysis .

Since 2017.

Every year ,
model size increases by 10x.

· google Bere -> understanding

· Open Al GPT -> generative

· GPT - 4 -> mixture of experts model .

Language Model
:

next word prediction given context.

P(wi/w, ..., Wir] .

↓
probabilty distribution

↓

sample from distribution- (sampling decoding).

generate .

-
(greedy decoding).

↓

&
(top-k hecoding).

Implementation -> Transformer

↓



Attention mechanisms. en)

PC #1 I saw a cat on a)

↑dining of ML : j #Erasformerlayer I I

↑

Ensformerlayer
↑

--- ↳
self-supervised learning :

I saw--

· predict the future from the past /11- predict

· predict the future from the recent past-*
-> predict

· predict the past from the
present . #preict"

· predict the top from the bottom
.

(predict any part of the past , present or future percepts from whatever information is

available).

Motivation : · successfully learning to predict everything from everything else would result in

the accumulation of lots of background knowledge about how the world works.

· Mass amount of data.

SSL in Language Model.

· sentence :

y = (Y
,, Y , ...,

y
+ )

Po(y) = TE
,
Po(Yel Y

: -1) .

Training :

given data example y*

minimizes negative log-likelihood of the data.

milgImbe = -logpp(y*) = - TE
, Poly

* 14
*

+ : .. ).

· A transformer-based LM with 125M to 1731 parameters



Trained on massive text data.

_Embeding :

·Conventional word embeding

· Worddvec
,

Glove

A pre-trained matrix
,

each row is an embedding vector

Erdezvee -> embedding matrixcorpus
-> I

· Problem : word embedding are applied in a context free maner

· solution
: train contextual representations on text corples.

↓

MAERT: a bidirectional model to extract contextual word embedding

· Training procedure

· Masked language model (masked LM).

· masks some percent of words from the inpet and has to reconstruct those

words from context.

Cuse the output of the

predict possible words

masked word's position ↓#+ Softmax
to predict the masked word).

it
-Imask)1↑

More solutions :

randomly ↑ 80 % time mask

mask 13 %

of token
10 % time random word

in put
+ 10 % time keep same

-

· Two sentence task :

· To understand relationship between sentences :



· Predict likelihood that sentence I belongs after sentence A.

· BERT : Downstream Fine-tuning :

· BERT for sentence classification.

Masked Aucoencoder IMAE),

Masked Encoder
-> > decoder -> Target

-

imagers ↑ ↑
-

small after
sub see pre-training

,
of visible

discard Decoder
patches

and use encode

for patter recognition,

Relative Postioning :

Train network to predict relative position of two regions in the same image.

48 possible locatina

11 17 17

pre-train CNN using self-supervision
classifier
↑ ↑ 1 .

Input image
CNN CNYN

2. Extract
region proposals

3. Compute (NN features .

· Colorization :

Train network to predict pixel color from a monochrome input

SSL from videos :

· VideoSequence Order

· Sequential Verification

· Video Direction

· Predict if video playing forwards or backwards.



· Video Tracking :

Given a color video
,
colorize all frame of a gray scale version using 9

reference frame .

EnhancingLLM

limitation: · Lack Word and Agent knowledge -> Need richer learning mechanism

· Inefficiency of the language modality -> Need mult-modal capabilities

· Richer learning mechanisms

· learning with embodied experience

Where to get

· How to get

· How to learn

Embodied simulators

Househod activities

· Touch dow

· Minecraft

· OS

Simulated websites

How to
get :

· Goal-oriented

-Collecting experiences by completing a given task

MC TS -> Question & Answer
convert experience

into training data (planning)

· Auto curriculum

proposing new tasks automatically by prompting GPT-4 to generate

new tasks.



new
task

task
->O I

oelectexperience

& learn with experience

C--
ne updatej exploration

progress

· Random Exploration :

· Finetunning LMs with the experiences

· but also want to
preserve the original language capabilities of LMs.

· instead of overfittirs

· Continual learning with EWC /Elastic Weight Consolidation)·

H

Fisi=
L(0) = (v(0) + x[Fii)0i -

*

u
,
i) "

↑ ↑
conventional regularizer to

finetuning preserve important weights.

objective

· Updating external memory

instead of changing LM
parameters

-modealCapabilities

existing limitation

· can understand images/cannot generate images

can do interleaved generation of image and text-

however generated images are not consistent- > Lack internal world
model .



Video diffusion model -> generates video given actions

predict future frame giva previous frame and action.

1 (St (Sty ,

+-1)
.

Text-to-Video generation.

· en) Sora

-

=> Need a more general world model

integrate different spaces

generalist capability

real time control .

Latent-space Reasoning
-

↓
which fuses information of different observed modalities.

· Multi-level latent space

· immediate next moves

· mid-term and long-term planning and thought experiments.

↓
How to learn a good latent space ?

· Compact and well-structed representation of the world
,
realistic generation.

consistent reconstruction.

Examples of latent-space

· GAN

· Autoregressive

(· VA E ->

· Diffusion

Latent diffusion.
· DiLED

(EDDPM)
.



· No Free Lunch Theorem :

· No single model is universally best-performing algorithm for all problems.

· All algorithms perform equally well when their performance is average across

all problems.

Unsupervised Learning
-

probability :

sample space : space of all possible outcomes

o p(c, y) joint probability

· p(y(4) =x,
· Elfins] = Zaf(u> P(u) or = Sefcus cas dec

·

p(a) =

2 P(u,y)

· P(u,) =

z ...IP(n,...
N,

· P (4, y) = P(Y(u)p(2)

· p(a.. ..., UN) = P(4, ) P(ac( , ] ... P(cN14 ,
... GN - 1)

.

· Bayes rule : >
likelihood

↑ (OID)=(0)
A
prior beliefe

y
posterior
belief

p(u, y) = P(u)P(y)

· p(u, y /z) = P(u(z) P(y(z)

· Gaussian Distribution

Multinomial Distribution



Entropy :

Shannon entropy H(p) = - [up(a) logp(m)

average level of "information"

#Divergence : measure closeness of two distributions plas and q(u)

kL(q(a)1/p(as) = plaslog

also the relative entropy. I high
,

p high => low 12

· k( > 0 ↑ high
, plow = high KL .

- if I is low
,

low KL regardless of P.
· Not a true "distance" S

Not commutative k((p1q) + k(411p)
.

Not satisfy triangle inequality x fixing this distribution.

q(y) "Gug"
"cat"

-
- &M..... -

& -I (u)
· Supervised learning :

-
I

learn Po(u) see how close

Observe full data. P(2) is to (2)

mink L is to approach p(a) to

MLE : min-Ec-pcay [log10(2)] q(h)
.

F

↓
I

MLE is minimizing KL between hata and model distribution!
1< ((p(a) /I Po(n)) = - Ep(a) [logpp(as] + H(p(us)1

-

KL (p(k)11q(2))
I

= In (a) log I
I W

p(u)
=In (n) log plas - In (a) log Polo) I

----
-------

I
= H(p(as) "(u)[logpo(a)]

! M
cross entropy

⑪
mode seeking

VAE



S

I k((q(u) 1) P(n)
Unsupervised Learning

I

&AN
mode-missing

· observed variables &
IT

latent variables z. I V pans

want to learn Poli , E).
I - ↑

↑

IM" "quas
latent variable :

/

- I

...------------

· Discrete latent variable can be used for partition/cluste data into subgroups.

Continuous latent variable can used for

en) Gaussian Mixture Models.

a mixture of 17 Gaussian components

p(x . /p
,
2) = [1 #i N(r

, / Mr
,

Ek)
.

↑
mixture

↑mix
care

proportive component

Z as latent class indicator

↑ (21) = multi (En ; i) = Th (+ /
*

"

· X as conditional gaussian variable with class specific mean/covariance

p(kn(z" = 1
,

m, 2)

I

(2 12 expe--- E

taking the expectation.

likelihood ↓ X
mixture proportive , weight of gaussian distribution

p(kn)m ;
2) = [kP(z" = 1(m)p(k , )z" = 1

,

M, z)

↑
= [kπkN(x)(4k

,
[k)

. siren different siccession distribution

how data fits in



observed data

MLE : l(0 ; 1) ↓ I supervised).

/ -

= log P (zn
, zn)

I = log p (En /Tt)D(En/Zn; M
, 6)

ElogT + log N( ;M

= & z" logTi -Zz" (4.

- MR) + c

to find un know parameter

k

in

Ele

In unobserved daza case :

mempletefor marginal) log likelihood :

with z unobserved
,

our objective becomes log of a marginal probability :

& (0
,
4) = logp(u(0) = log [zP(2 , 710)

--

hard to
y j ⑭learn marginalize out z

Oz
&MM : log P(c. (M,2) = log [k PLE" = 1/ I) P(m ,

1z" = 1,2) .

Complete p (A
, B) = P(A) PCB1A)

Y

-log likelihood of "known latent mode
L

ec(0 ; <
, z) = log P(u,

z(0) = log PCEIE)P(K/z,
0

= log p(z(fz) +

log p (2 /E
,

On).

&MM : logp(2n ,
zo/m , z) = logp(zn(n) p(an/En , Mz)

ExpectationMaximization (EXX)



Inecation
:

supervised MLE is easy : max ec (0; 4
,

z) = logp(2,
z10)

unsupervised MLE is hard
: maxl (0 , x) = logp(x (t) = log[zP(a, z10)

FM :
supervised MLE

↓

M1-Step : max Exting [logp(a,El pretend we also observe
--

F -

distribution

that we "imagine"

T
E-Step : ↑(z/a) = p(z( , 0 can't observe & ,

estimate it.
↑

using the current

j parameter
,

estimate the

posterior ↑ distributive
,

distribution
,

-

E/M :

coptimize 4
distribution&

· similar idea GAN-generator ainator

t +/

E-seep : ↑ (z(k) = p(z(, ot)

↳ G iterative process

↑ -Step : max Eqt(z(k) [logp (2 , z(0)]
⑦

Coptimize model parameter

(coordinated descent)

Formally,

For
any distributionp(EI2) ,

define
marginal
epectedcomplace log likelihood.

--

·
E= Egzslogpt

inherit the factorizability of ec(F;
i

,
E)

use as the surrogate objective

t
Maximizing thisyields a maximizer of likelihood ?

e(0 ;n)2ec(O; 2
,
z)] + H(p)

-

mariginal
unsupervisied ↑

EM optimize this lower bound
=

-
which in turns optimize this



proof of inequality : Noee :

Jensen's inequality
convex :

C10 : a) > Eq[lc(o; a
, z)] + H(q)

. Epcys(f(y)] >,f (Epcos(y])
.

e(0 ; x) = logp(k(0) concave :

= log [P(u(z , f) Ep(y)[f(y)] = f (Ep(y[y])
.

/ f(E(j)]f(Y) f
&

-":&- E(fly
lig a -# !

-

I

↓ Y&

function ·I
·i
TEZY

concave (Evidence lower Bound)
EL BO

= EpCE) [log p (2,
z10) - 10g4(z(4)]

= Eq(z(u) (log p (n,
z(0)] - Epizing [log <(12)] ·

1
.

Thus , conclusion,

e(F : c) > Ep[lc (fix ,
z)1 + H(p) = EqCzIa)[log u LED

/↑ by 16230
· estimated distributionWe can show that (HW). (

ideal distributio ↓ given parameters.

e(o ; u) = Eq(zin) [log + kL(q(z)l)p(z(x, %)
-

-ELBO]-
↓ ↓

Back to EM ↑ -Step E-Step .

For fixed datas
, define a functional called the (variational) free

energy

#4 ,
0) = - Ep[lc (F;c, z)] - H(q)x - e(t, x)

-

function ↑of function
min F(4

,
0)

Thus
,

EM is Ordinateddescent
on

F : z algorithm
E-Step : pt

+
= argmin F (4 , Ft) 2 F

M-Step : Att = argain F (gt+, Ot)
F



..
queen- -

-
-

-

Pre-training through language modeling.
-

I
· Pf(WelWe-)

,
prob .

distribution of next word given previous context.

~

high quality pre-training hata

W

Internet.

I &

however
,

web-data is noisy ,
dirty ,

biased.

· copyright and usage constraint .

data is contaminated with auto-generated text.

↓
training on thesehata will cause model collapse.

Diversity ofLata matter.

① Pre-training

↓ Elimizada data

adape to task.

② Fine-tunning

SGD inection :

· approach general pre-training loss

· approach local min fine-tunning loss

Full fine-turning -> update all parameters.

Parameter-efficient fine-tunning -> update a few existing /new parameters.

(less orefitting) .

↓
by injecting a adapter layers into original network

, keep other

Crandomly initialized). parameters frozen.



prefrex fineturning -> learning a small continuous task - specific rector t each transformer
block.

while keeping the pre-trained LM frozen.

prompt fine-tunning -> A
single "soft prompt" prepended to the embedding input.

of full weight.

-
low-rank Adaptation (LORA) -> uphate the low-rank representative parameters.

learn a low-rank "hiff" between pre-trained

and fine-tuned

Pre-training '
-

Encoder -> bidirectional
,

condition on the future context.

Autoencoder model
,

masked language model.

Encode & decoder -> seaused model

becoder only -> Autoregressive model
, Left-to-right language model.

Encoder : Text reconstruction -> encode info. from both bidirection

H

crompting :

· complete a sentence

· prompting

↓

inference

& askoccept in format.

Few-shoe prompting

provide a few example together with the tasks in prompting

↑/ -(Add "role"
,
name", Content

1

as JSON.

In-context learning

· order of example matters



· label coverage matters

· label balance matters.

Replacing correce label with random label will barely here the
accurac in

in-context learning.Chain-of-Throught

yet the model to explain its reasoning in output

Zero-shot)-COT - add a prompt to encourage
model to reasa

C "let's think step by step")
.

Structing output as program
code

Creasoning through coding)

Prompt engineering :
-

Manual engineering : format

↓
format of prompt matters

in task accuracy.

Paraphrase a existing prompt

Reason+ Action (ReAct)

Persona-based prompting
adapt to user

role-playing -
- adapt to environment .

personalization .

· self-refinment prompting :

-------------- -
- ----------------

EM continued :

E-step : minimization of F(q ,
5) W

.
r

.

t
. 4 .

Optimal solution : att =

argin F(g ,
0t) = p(z/c,

ot)



(the posterior distribution over the latent variables given the data and

current parameters).

hine : 110 ; 2) = Easzia) (log OCE + kL(4(z()11P(z(x, 5)).

= - F(q ,
0) + kL(p(z()11 p(z(, 0)) .

-

- approaches 0
, q(z(x) = p(z/n, 0

min 1/0,
2) as possible.

↑ Step : minimization of F(4
,
8) w

. r
i

t

. O
.

F(q ,
0) =

- Eq[lclo ; 4
,
z)1 -H(q) > - elf; 2) .

-

expected complete log likelihood.

↓

so
,

ptt = argmax Eq[lc(0 ;
e

, z)]

given
as estimate

= argmax#(c) log p(a,
z 10)
-

↓

solve as

supervised.

-MussianMixture Model (GMM)

E-Step : posterior of En given the current estimate of the
parameters

p(z" = 1 (x ,
0t) =

z= 1)Plc(z"= 1)

P(a)

p(z" = 1) p(u)z" = 1)
-

[] )pu

=

#kN(u(((k,
2k)

[j1
,

it
; N(2/Mi

, [j)

j ↑
-

mixture given parameter.
proportion

= Yk
-

(
W



Ma-step : computing the parameter given current estimate of En

q
+

(z"(x) = p(z" (x
, 0t) = xK

qtt =

argmax[4
**

(z" = 1(x) logp(k,z= O

EqtH[logp(x , z10)]

=

[Yk(logp(z" = 110) + logP(x)z"= 1 ; 5)) .

= [YklogTk + Yk log N(2 ; Mk
,
[ 1)

·

we can maximize by solving parameter
directly

EM for GIM :

initalize MK
,
Ik

,
Tk

iterate until convergence :

E-step
.

12-Step -

E/)
01 LLM reasoning

Equyias [log 010 = 1 (x
,
y)) - KL(q(9/2)11Po(914)].

= Eqiyas log1, 9) qua) + logym)
<

- Eplogq(91) -

*

(14)

= - kL(*(1) 11 De, y) Po(Y(a)
/-

1 **1912)
= 0(0 = 114

,
y)po 1914).

reweighting the answer



M-Step
.

E-step

· Generate date

W - Step

optimise 5 with positive date.

Replace PPO with EM.

Each EM iteration guarantees to improve the likelihood.

limitation : need to compute p(z/ , 5) in E-step.
-

T

p(z
,
x/tt)

-

P(z ,
4/tt)

--

might be hard to compute.↑ especially if it is continuous.

=> Variational inference .



· Observed variable S

Intent variable Z
.

Variational Bayes :

used to approximate the posterior
distribution over the latest

variables
.

I p (A
, B) = P(A) PCB1A)

V
↑(E

, x (f) = P(x(t)P(z(, 8)

↓
-I
·
th):,o 2zP(z,

x(t)

in E-M
,

we assume q(EI) can be and distribution

& E-step shows the optical p(7/) is the posterior distribution

-

idea :

choose a mileof distribution over ketent variable Zim

with its own set of

9 (z, . m /V] variational
parameters

v
.

- -

2. Then we find the setting of the parameters that makes our

approximation a
cloese to the posterior distribution

.

=> optimization problem .

3. use a
with the fitted parameter in place of

posterior -

=

min kL(((z(2, v) (11z(4).
I

approximation posterior .

how => 4) + Eaczins (log = -k(p(z)IP,

↑
Constant ↓

argoax Eaczia
,us[



= arymaxvEaiziu
, v) [logp (n,

z10)] - Epczin
, v) (10g4 (214

,
v3]

.

iden : - -
a ↑(z(2)

Using EM :

-

-
v * kL(q(ziv *)/(p(z(u))

9) (z(k
,

v
*)② = mink((q(z(x, v)1/p(z/4 ,

0
+1)

~ init
~

↑family of 41z14, v
= min F (p(z/k, v)

,

ot) + cons--

Q : How to choose variational families of (E1,
v7

.

· factorized distribution ->
mean field VI

· mixture of gaussian distribution -> black-box VI

· neural-based distribution -> Variational autoencoder (VAEs).

afield VI :

Assume variational distribution over latent variable factorizes as

q(z) = q(z.... Em) = (j).

↑
independent Ej

"local variational approximation"

en) Bayesian mixture of gaussians.

Assume menn-field (U1:k
, Zin) = i4(4k) T

, 4 (Zi).

For eachGaza example : ED.

E S +e)

update local variational distribution
-7

update global distribution & parameters.
-> M-Step

-

Until ELBO converges.



Or VIchastic

where we sumpe data example randomly
and updatea (zi).

update global ↑(Mk] with natural gradient asscent.

VIBack-box

limitation :
we have -defineupdate rules

How can we use VI with any model :

reusable

Ent*FemodelJ
-

↑
sample from 42

form noisy gradient.

variational distribute 4x(EK) with parameter
X
.

assionmixture distribution as universal approximator
-

-

E L130 : ↳ nmM
L (x) = Ep(z(x) [ 1oyp(u, z/] - Eq(z1x)(log4(z/x)) .

1
1
...

I ↑



I Bottleneck : approximate well only

I Why deep neural network good ? with enough components.

- inductive bins
inpractical .

-

I
·

compute exact syadient is not feasible.

L = Eqx(z) [fx(X)])
.

I
W

· Score function
· Reparametrization trick

.

=> Loss : 1 = Eqx(zj[fx(z)7 .

= (4x(z) fx(z)

assume we an

-Press
the distribution 4x(2) with a transformation.

t = s(t) E) z - q(z(x)
.

z = t(t
, X)

en) . E-Normal (0.
1)

.

ET ze Normal (M
, 62)

.

z = E 6 + M .

=> After reparameterization :

L = Ense, (fx(z(t , x))] .

Original
distribution reparametivized Form

.

↓ chain rule
.

↓ d
so

, gradient [xL = Ex-sces [Yzfx(z) *xt(t
,
X]

.

- [ *zifx(zi) XxZi F MC Simulation
.

Pro : low variance of gradient estimate 7.
Con : Not all distribution care be reparameterized.

* L = Ec- s(t)( *z(logp(u , z) - logq(z)) *xt(t , X)]
.



↑⑫ 4(z(a) jz z =x + 60S

- 1
-

1

* /T
# [** - N10

, 1)

VAE
-

· variational inference
variational distribution parameterized as neural networks.
· reparameterization

· Model : Po(k
,

z) = Polc (z)p(z) .

↑ ↑
②

generative model
Prior (gaussian). ↓

⑫
Assume variational distribution. 40 (214).

-

a garession distribution parameterized
us decep neural network.

(probabilistic encoder).

both

Saussian

ELBO :

<(5
,

0; 4) = Exp1zim) [logpo(2,
z)1 + H(qp(z1ms). ↑ distribution

- alytical
- -

= Eqp(Emp]loguz)]-kL(90(E1) /1 PCE)) .

form

↑ -

- -
x4p(z(a) .

generator divergence from prior-
↓

111 reconstruction

---

I I 1x
K

2
, 0223



· reparameterization :

[M: 61 = focus (a neural network)

z = M + 60t
,

E-N10
, 1)

.

-y( = EE- N(0
, 1)
( *z(log po (2 , z1 -1094p(z(as]) *yz1E ,

011
.

YoL = Exp(z(u) [Yolog Pola, 211 .

Network :

-

I K data
-
> input

↓ ↓ & encoder
MzI [z1k S network

Pf(k(z)

↳ ↓
sample zI-N/MZk , IzM)

# An latent space representation

decoder↓ I ! network. Con : sample blurrier and lower quality
Mulz [kIz I 40(z(z)

. Sara PX ↓
sampleaZ from 21zmN(Malz , [n(z)

lat M
VAE for text . multinominal gaussian

z space .

Z = sentence I

Zu = sentence 2D generate Z"



variational distribution as an inference model

Amortizede Variational Inference : ↓ 90(z(a)
-

· Amortized the cost of inference by learning asmgledata-dependent inference
model

.

↓
for quick inference.

#DiffusionModel

sample data plao) -> turn to noise

(Clean sample). 4(k+ (x+ - 1)
.

(Pure noise).

Po(QoS 17 1 L)= "E 17 p+( +) ~ N10, )

-

reverse/denoising process
turn into data -> sample coise P+ (i)

Py(k+ - , ((e)

Better than VAE b/c · decompose into many Steps (2000 steps

· denosing as supervised learning

L ground true data exists).

--
-

PSC190 DI.
-

Loccept learning through probabilistic program indetection.

expence : massive data examples.

Human-level concept learning : require much less data.
richer representation .

Bayesian Program Induction -> to minic human-level learning.

↳ The poogram : a generative model of handwritten characters .

-



I primitives
sample from original date ↓

↓ program (heuristic) .

generie

↓

Type :
Primitives

: constrained search space.subpart : extech and vary
↓
-

↓ parameter.

part , combina ↓
don't need much data

object : attached along t train
.

template

Crelation]

↓(motor variance/starting location)

examples : trajectory.

constrainted searching : ↓
->

Bayesia inference :

*
=

argmax P(program / data).program
program

↑
= agmasterprogram) - P(program)posterior

program P(data)

~

Reinforcement Learning -> Post-training for LLM

RLHF

take actions that maximize rewardss.

model Po(10)
-> SL

-

-
-> RL

9
supervision -> USLAction e

· level I
W

en) sparse reward

state : angle & position

Action : torque applied on joints I
W

Reward : I at each time step upright + forward movement.
Reward shaping



#P St - > At

marker property : current state completely characterises the state of the world.

(S
,

A R
,
P

,
Y)

r+
- r(Sa ER

&

--- --

y I I - discountX
-actor

.

see of set of distribution C => PC Ser, 1 Se
,
at)

,

possible states' possible of reward" transition

actions; given pair ; probability I
to simulate uncertainty in the

At t = 0
,

initial state So-P(So). future for reward.

-

action Ut 2 exponential daway) .

- sample reward reaR(olse
,
at

-sample next state St-P1 : /St
,
at

-receive reward it and next state Set,

Policy TI is a function from S to A that specifies what action

to take in euch state.

Objective : find policy #
*

that maximizes cumulative discounted reward
- -

2 y "re
example) [30

Grid-word : action I right, left, up
,

downt -
S

reach from one grid to the other

negative "reward" for each transition.

Want to find optimal policy *, how to hamble randomness

Maximizes elected sum of rewards

#
*

= argmaxElY"re]
with So - P(Sp)

at - +) . 1st)

St
+

= Pl . /Se
,

at)
.

Following a policy result in sample trajectory ' So
,

Go
,

ro
,

31
,

01
, %...

-



ValueFunction

at state S
,

the expected cumulative reward from following policy from
State S.

Vi (s) = ELIY *

re/so = S
, ]

.

↓
assure following a policy.

Qvalue function : (value func for sectionpair) .

Q
*

(S
, a) = ELIX

*

re)So = S
,

do = a
, i. (future expected cumulative

expanded form :

rewards

------ taking action a in states
,

Q
*

(S
,
a) = astro + y + r

,
+ y2 - r + - ) the following the policy-

-

143319, 5730% -
- -- -

&

↑
set

, another Q-value
at+ 1

= E(e + YQ" (See
, den) ]

i (als]
P (S19, 3)

Bellman Equation : -> also follows recursive fashion
-

optimal Q-value function &* maximum expected cumulative reward

&* (S
, a) = max ElX

*

re(So = S
,

00 = 0,]

satisfies
↓
future value

*** (s
, 9) = Ess [r + XmaxQ (s

,

al Is
, 07

.

-

intation : if optimal state-action values for the next time-step &*LS'
,
al)

are known
,

then the optimal strategy is to take action that max

expected value of

r + Y
*
(s'

,
al) / a

*
= argmaxQ

*

(s
, a)

c- (π *
(s(a*)

take best actio A
in any state as optimal policy
specified by Q

*



Value iteration algorithm : use bell man equation as an iterative uphate :

update

-
Q

: +(5 , 9) Er
+ YmQsall11

Q: converge to Q
*

as i > 8
.

Problem :

Not scalable. must compute
all state-action pair.

small scale -> Table-based value iteration.

a az

S2 M -
-↓

Si - -

-

-

Se
-

Solution
: a function approximator to estimate &(S

, a)

(neural network)

() Q
*

(s
, a) - > Q

Deep Q network (Alpha Go).

I
learning

Q (S,
a ; 5) =Q

*
(S

, a) function approximator to

estimate action-value function.

experience

Forward pass :
database surprived task.

Y↓
[(: - Q(s

,
a ; 0:))"]loss function : Li(Oi) = Es

, ampas

-
where Y: = Ess-c[r + YmaxQls'

,

al
: Ei - 1) Is, all

47

bellman
eq as ground true



Backward Pass : learns a function to satisfies

Gradient update :

bellman equation.

40 ; Li(ti) = Esampe)
;
sirc[r + YmaxQCs', a : Fi -1) - Q (s,

a : %:) 40;
Q(5

,

a : 0i)]

en) Atari Game
:

Q (s
,

a
,
0) :

(what if actions is continuous
--7FC-4 (Q-val) 4 actions > us control

#

FC - 256 ↓
↑ pass in action as well.

32 4 X 4 Conv ↓
↑ enumerate al possible a for all state

16 8x8 conv Chuge space to search).

T-

game screen

Call states)

Training Q-network trick
-

· Experience Replay

learning from batches of consecutive samples is problematic.

- sample are correlated

- bad feedback loop.

= Continually update a replaymemory
table of transitions

-

trainQ network on random minibatches of
ils,

at
,

re
, Seal

--
.... ---- -

transitions from replay memory
-

train

-replay
network

C

Omemory

->

put
back



replay memory + Q network

- initialize State

exploration/exploitation .

C

greedy that maximizeQ value.
execute ↓

-

action
L

-> store data
-

-> sample experience

replay
from

and Go GD.

Derive policy : &
*

=

argmax
Qo(S, a)

.

AdicyGradient
:

· on-policy
· policy-based

define a class of parameterized policies : T = E No
,
FERJ

.

for each policy
,
define its value :

↓
policy based

TJ(0) = El X
:

rel 10]

want to find optimal policy &
*

= argmax J(0)
O

Gradient descent
on policy parameter.

=> JCOS = Empcrios [r(T) ]

-

Jedjecture



ToJ(F) = S
,

= (T) Topl ; F)dr
.

[

use trick : &
*P( = ;f) = p(=;) = p(= ; f) xflogp(=; %)

I
~

* J(f) =(
=
(r(t) -flogp(=;5)) Plt;]dr

= E [logp(=; F)]

police estimate with . Monte Carlo campling

based

p(tit) =GoP(sin(St ,
at) To (a-ISe)

C

logp(it)= Se,To(ace)·
#olog P(t ; 5) =Yolog Tocast) (done dependon

T transition probability).

Intration :

if - (t) is high
, pash up probabilities of actions seen.

if rCF) is low
, push down probabilities of actions seem.

In expectation ,
if a trajectory is good,

then all its actions were good
,

then it averages out.

RLALa

(Autoregressive) text generation model :



sentence Y = / %--
- YT)

↑
trajectory

,
I = So

,
do

,

ro
,

S
,

a, .

↓
logits

To (Ye /Y(e) = softrax (fo(Yel]ce))
.

↑
-

j
action state policy TF (OzISe

· Revaid Ve = r(St , at)

↓
sparse ,

re = 0 for + < T
.
(until sequence ends)·

General RL objective : maximum cumulative reward JCT) = EveYre].
Q function : operafuture reward of taking action At is state St.

Q
*
(Se

,
at) = Ex[xres(se ,

a

& PT3
.

3 -> Chat GPT :

(supervised fine-tunning & RLHF).

1. collect demonstration data & train a supervised policy

①prompt sampled from prompt dataset.

② labeler demonstrate desired onepur

③ data used to fine-tuned LLM (supervised learning).

2. Collect comparison data& train a reward model.

-

↓

LLM output

labeler ranks output-> used to train our reward model .



3. Optimize policy against reward model.

new prompt sampled from dataset.

↓
policy generates oneput& ↓
reward model calculates a reward for the output.

update policy using PPO/DDO...


